

Ingestion of Microplastics by Macroinvertebrates in Streams in York County, PA as an Indication of Pollution

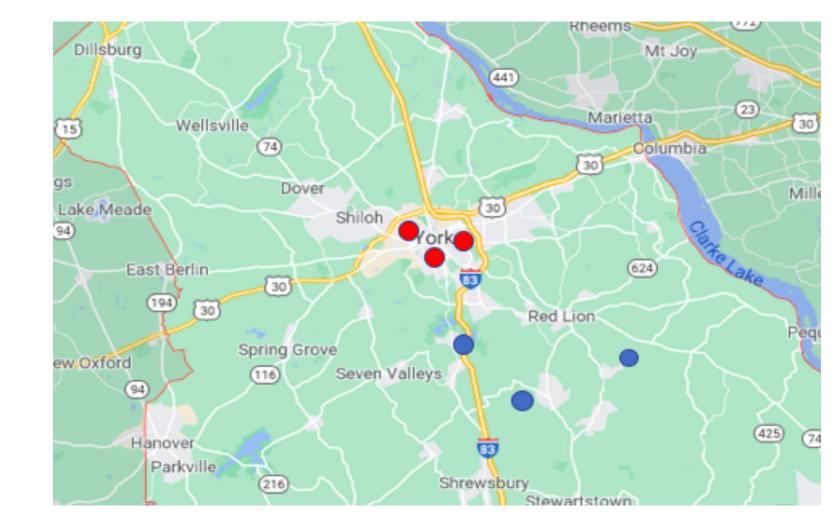
Chloe Doyle* and Jessica Nolan, Department of Biology, York College of Pennsylvania

Introduction to microplastics

- Microplastics are pieces of plastic smaller than 5 mm
- Infiltrate waterways and soil
- They can easily be ingested by accident or mistaken for food

Introduction to macroinvertebrates

- Macroinvertebrates are a category of organisms that can be seen by the naked eye but lack a spine
- Have different pollution tolerance levels (good bioindicators)
- Are able to ingest microplastics


Objective

Quantify macroplastics found in streams in York County and extract microplastics from macroinvertebrates found in these streams

Hypotheses

- 1. There will be more microplastic particles found in macroinvertebrates that live in streams with more macroplastics
- 2. There will be more microplastics found in pollution tolerant species over pollution sensitive species of macroinvertebrates.

Methods Flowchart

Map of the study area in York County, PA. Red dots represent urban streams and blue dots represent rural streams.

Collect macroplastics

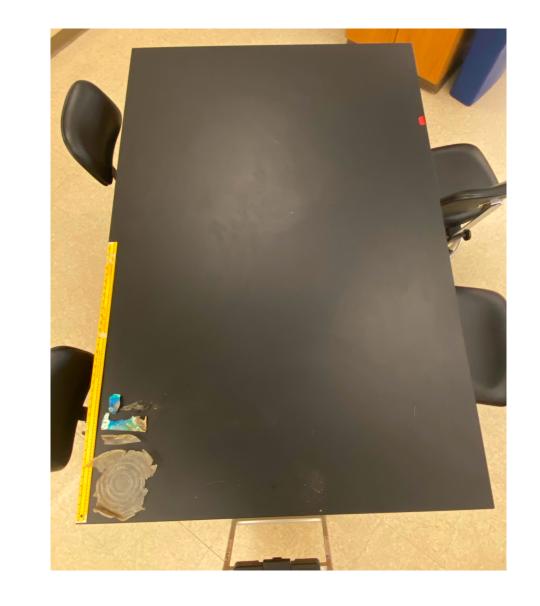
Kick sample for macroinvertebrates

Bring back to the lab

Pool samples

Measure length and width of macroinvertebrates

> Grind in mortar and pestle


H₂O₂ solution for 3 days

Observe under microscope and count microplastics

Results and graphs

Collected Macroplastics

Tyler Run (60 pieces)

Pine Run (4 pieces)

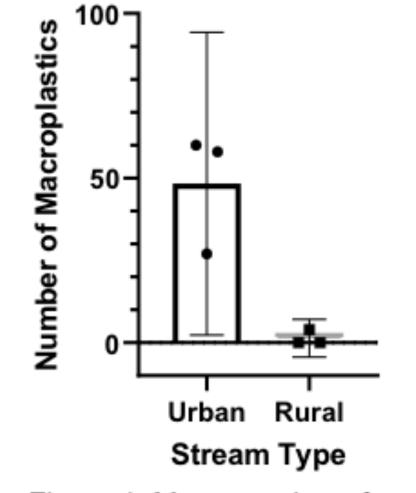


Figure 1. Mean number of macroplastics (± 95% confidence interval) collected from urban (n=3) and rural (n=3) streams in York County, PA. Averages were not significantly different (U=0, P=0.1000).

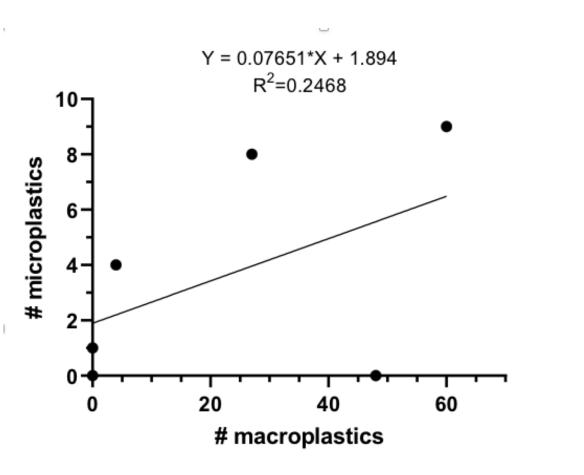


Figure 3. Relationship between the number of microplastics ingested by macroinvertebrates and the number of macroplastics found in each stream (n=6). Linear regression analysis shows a positive slope but is statistically insignificant (F_{1.4}=1.310, p=0.3162).

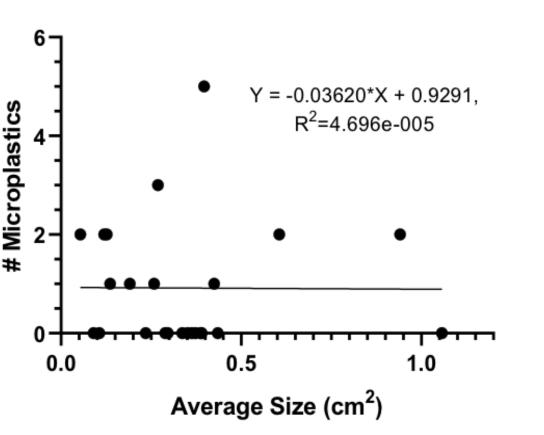


Figure 5. Relationship between number of microplastics ingested and average area of each pooled sample of macroinvertebrates (n=24). Linear regression shows no significant trend ($F_{1,22}$ =0.001033, p=0.9746).

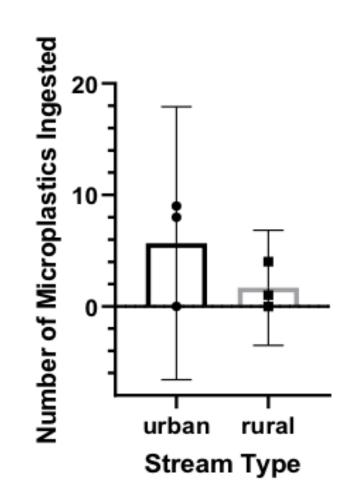


Figure 2. Mean number of microplastics (± 95% confidence interval) ingested by macroinvertebrates collected from urban (n=3) and rural (n=3) streams in York County, PA. Averages were not significantly different (U=2.500, p=0.5000).

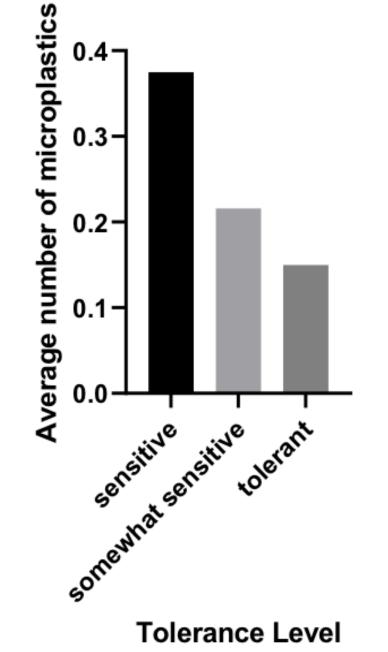


Figure 4. Average number of microplastics ingested by macroinvertebrates based on pollution tolerance level.

Conclusion

- Urban areas are more affected by microplastic pollution
- At the bottom of the food chain, macroinvertebrates are able to ingest microplastics
- Low macroinvertebrate diversity can decrease number of microplastics
- Future studies can focus on how microplastics move up the food chain or expand the study area of this experiment

Sources

6&rep=rep1&type=pdf

ALLARM (Alliance for Aquatic Resource Monitoring), 2009. Biological Monitoring Manual.

https://www.dickinson.edu/download/downloads/id/7013/biologic al monitoring manual 2017pdf

Avio, C.G., Gorbi, S., Regoli, F. 2016. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Marine Environmental Research, 128, 1-10.

https://doi.org/10.1016/j.marenvres.2016.05.012

Bode, R.W. 2002. Benthic Macroinvertebrates in Freshwaters- Taxa Tolerance Values, Metrics and Protocols. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.516.277

Courtene-Jones W, Quinn B, Gary SF, Mogg AOM, Narayanaswamy BE. 2017. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environmental Pollution 231:271-280.

Hauer, F.R., Resh, V.H. 2017. Macroinvertebrates. Methods in Stream Ecology, 1, 297-319. https://doi.org/10.1016/B978-0-12-416558-8.00015-9

Windsor, F. M., Tilley R. M., Tyler C. R., Ormerod S. J. 2018. Microplastic ingestion by riverine macroinvertebrates. Science of the Total Environment, 646, 68-74. https://doi.org/10.1016/j.scitotenv.2018.07.271

"All research activities in this study follow the Guide for the Care and Use of Laboratory Animals (National Academies Press, 2011)."

